If it's not what You are looking for type in the equation solver your own equation and let us solve it.
58x^2-100=0
a = 58; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·58·(-100)
Δ = 23200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23200}=\sqrt{400*58}=\sqrt{400}*\sqrt{58}=20\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{58}}{2*58}=\frac{0-20\sqrt{58}}{116} =-\frac{20\sqrt{58}}{116} =-\frac{5\sqrt{58}}{29} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{58}}{2*58}=\frac{0+20\sqrt{58}}{116} =\frac{20\sqrt{58}}{116} =\frac{5\sqrt{58}}{29} $
| 21-12v=-15-3v | | 5-6w=2w-27 | | 1/3x-1=1/2x+2 | | 4m-3=9m+17 | | 7/11=4/x | | (3^x)+(1/3x)=10/3 | | x+2*x+5=70+x*x+3x | | 2*(1+z)+3*(7-z)-4*(2z-1)-(6-12z)=0 | | x+2*x+5=70+x*x+3 | | (2x^2+5)^2+3=28 | | x^2+10x-2475=0 | | x+2^2=4 | | 8x+100+2x+60=180 | | 7/4=x/161 | | (x+2)^2=4 | | 7/4=x/161x= | | X+2+x+1+x+(-1)=23 | | (x+3)(5x-1)=(x+3)(2x-7) | | x(x-4)=-21 | | 16=x+4+x+4+x+x | | |2b−10|+4=4 | | 2=5+3a | | (4x-2)-(-2+4)=12 | | 10=3+5a | | 7x10=82- | | (2x-7)/(3x-15)=1 | | 5x/4-7=3 | | 2x²+5x-12=0 | | 4/5(-15x/2+5/4x2)=x(x-2/x-4) | | x/5=62 | | (x+3)(5x-1)-(x+3)(2x-7)=0 | | 2x+7=143 |